Integral over polar rectangle
Wednesday, March 3, 2021 4:35 PM

$$
\begin{aligned}
& a \leq r \leq b \\
& c \leq \theta \leq d
\end{aligned}
$$

$$
\iint_{D} f(r, t) d A=\lim \sum_{i, j} f\left(r_{i}, \theta_{j}\right) \Delta A_{i j}
$$

Area of the red region is

$$
\frac{1}{2}\left(r_{\tau}+\Delta r\right)^{2} \Delta \theta
$$

Area of the green region is

$$
\frac{1}{2} r_{i}^{2} \Delta \theta
$$

$$
\begin{aligned}
\Delta A_{i j} & =\frac{1}{2}\left(r_{i}+\Delta r\right)^{2} \Delta \theta-\frac{1}{2} r_{i}^{2} \Delta \theta \\
& =r_{i} \Delta r \Delta \theta+\frac{1}{2} r_{i}(\Delta r)^{2} \Delta \theta \\
& \approx r_{i} \Delta r \Delta \theta \\
\iint_{D} f(r, \theta) d A & =\lim \sum f\left(s_{i}, \theta_{j}\right) r_{i} \Delta r \Delta \theta=\int_{c} \int_{a}^{b} f(r, \theta) r d r d \theta
\end{aligned}
$$

Ex:

$$
\text { Volume }=\iint_{D}\left(1-x^{2}-y^{2}\right) d A
$$

$$
\text { Volume }=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y d x
$$

D is a poler rectangle: $0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
\text { volume } & =\iint_{D}\left(1-r^{2}\right) d A=\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta .
\end{aligned}
$$

